From a5d43a63a61816980138737931155362a68cd40a Mon Sep 17 00:00:00 2001
From: "Vladimir V. Kisil" <kisilv@maths.leeds.ac.uk>
Date: Thu, 23 Aug 2018 23:22:08 +0100
Subject: [PATCH] Explaining in tutorial sign ambiguity for numer() and denom()

For example, for x/(x^2-1 independent evaluation of numer()} may returns
x and denom() produces 1-x^2.

Signed-off-by: Vladimir V. Kisil <kisilv@maths.leeds.ac.uk>
---
 doc/tutorial/ginac.texi | 8 ++++++--
 1 file changed, 6 insertions(+), 2 deletions(-)

diff --git a/doc/tutorial/ginac.texi b/doc/tutorial/ginac.texi
index 3742567e..4306d227 100644
--- a/doc/tutorial/ginac.texi
+++ b/doc/tutorial/ginac.texi
@@ -5499,8 +5499,12 @@ ex ex::numer_denom();
 
 These functions will first normalize the expression as described above and
 then return the numerator, denominator, or both as a list, respectively.
-If you need both numerator and denominator, calling @code{numer_denom()} is
-faster than using @code{numer()} and @code{denom()} separately.
+If you need both numerator and denominator you have to call
+@code{numer_denom()}: it is faster than using @code{numer()} and
+@code{denom()} separately. And even more important: a separate
+evaluation of @code{numer()} and @code{denom()} may result in disagreed
+signs of expressions, e.g. for $x/(x^2-1$ @code{numer()} returns $x$ and
+and @code{denom()} produces $1-x^2$.
 
 
 @subsection Converting to a polynomial or rational expression
-- 
2.18.0

