Thanks, I see it, but if I create a derivatrion "diff" the sign is important:
If I run formula.diff(a, 1):

[0.5*(t-ax^3)^2]' => -(t-a*x^3)*x^3
[0.5*(ax^3-t)^2]' => (a*x^3-t)*x^3

On my code I parse the formula (0.5)*(t -(formula)^2 and substitute formula with
another formula. I do not understand why the minus sign is not interpreted correctly.

I think GiNaC does create a pattern matching and not evaluate the correct expression.
In my opinion the first expression is the correct one, GiNaC creates the second. Why?
How can I tell GiNaC that it interpret the expression arithmetically correct?

Thanks

Phil
 


Am 06.08.2010 um 22:41 schrieb Doug:

(-1)^2 == 1^2
therefore
(-expr)^2 == expr^2
therefore
(t-exp(x))^2 == (-(t-exp(x))^2 == (exp(x) - t)^2

Do you see it now?


I'm now a little bit confused, cause I'm working for a long time with this problem and I don't see my "thinking error".
If I have an expression eg exp(x), so (t-exp(x))^2 is not the same (exp(x)-t)^2. Sorry I don't see it

Thanks

Phil
_______________________________________________
GiNaC-list mailing list
GiNaC-list@ginac.de
https://www.cebix.net/mailman/listinfo/ginac-list

_______________________________________________
GiNaC-list mailing list
GiNaC-list@ginac.de
https://www.cebix.net/mailman/listinfo/ginac-list