[PATCH 03/10] introduce gcd_pf_mul: gcd helper to handle partially factored expressions.
GiNaC tries to avoid expanding expressions while computing GCDs and applies a number of heuristics. Usually this improves performance, but in some cases it doesn't. Allow user to switch off heuristics. Part 3: Move the code handling products from gcd() into a separate function. This is *really* only code move, everything else should be considered a bug. --- ginac/normal.cpp | 89 +++++++++++++++++++++++++++++------------------------ 1 files changed, 49 insertions(+), 40 deletions(-) diff --git a/ginac/normal.cpp b/ginac/normal.cpp index 0af5aad..0cb9100 100644 --- a/ginac/normal.cpp +++ b/ginac/normal.cpp @@ -1419,6 +1419,10 @@ static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb, // large expressions). At least one of the arguments should be a power. static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args); +// gcd helper to handle partially factored polynomials (to avoid expanding +// large expressions). At least one of the arguments should be a product. +static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args); + /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X) * and b(X) in Z[X]. Optionally also compute the cofactors of a and b, * defined by a = ca * gcd(a, b) and b = cb * gcd(a, b). @@ -1461,46 +1465,8 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio } // Partially factored cases (to avoid expanding large expressions) - if (is_exactly_a<mul>(a)) { - if (is_exactly_a<mul>(b) && b.nops() > a.nops()) - goto factored_b; -factored_a: - size_t num = a.nops(); - exvector g; g.reserve(num); - exvector acc_ca; acc_ca.reserve(num); - ex part_b = b; - for (size_t i=0; i<num; i++) { - ex part_ca, part_cb; - g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args)); - acc_ca.push_back(part_ca); - part_b = part_cb; - } - if (ca) - *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated); - if (cb) - *cb = part_b; - return (new mul(g))->setflag(status_flags::dynallocated); - } else if (is_exactly_a<mul>(b)) { - if (is_exactly_a<mul>(a) && a.nops() > b.nops()) - goto factored_a; -factored_b: - size_t num = b.nops(); - exvector g; g.reserve(num); - exvector acc_cb; acc_cb.reserve(num); - ex part_a = a; - for (size_t i=0; i<num; i++) { - ex part_ca, part_cb; - g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args)); - acc_cb.push_back(part_cb); - part_a = part_ca; - } - if (ca) - *ca = part_a; - if (cb) - *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated); - return (new mul(g))->setflag(status_flags::dynallocated); - } - + if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b)) + return gcd_pf_mul(a, b, ca, cb, check_args); #if FAST_COMPARE if (is_exactly_a<power>(a) || is_exactly_a<power>(b)) return gcd_pf_pow(a, b, ca, cb, check_args); @@ -1771,6 +1737,49 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args) } } +static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args) +{ + if (is_exactly_a<mul>(a)) { + if (is_exactly_a<mul>(b) && b.nops() > a.nops()) + goto factored_b; +factored_a: + size_t num = a.nops(); + exvector g; g.reserve(num); + exvector acc_ca; acc_ca.reserve(num); + ex part_b = b; + for (size_t i=0; i<num; i++) { + ex part_ca, part_cb; + g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args)); + acc_ca.push_back(part_ca); + part_b = part_cb; + } + if (ca) + *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated); + if (cb) + *cb = part_b; + return (new mul(g))->setflag(status_flags::dynallocated); + } else if (is_exactly_a<mul>(b)) { + if (is_exactly_a<mul>(a) && a.nops() > b.nops()) + goto factored_a; +factored_b: + size_t num = b.nops(); + exvector g; g.reserve(num); + exvector acc_cb; acc_cb.reserve(num); + ex part_a = a; + for (size_t i=0; i<num; i++) { + ex part_ca, part_cb; + g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args)); + acc_cb.push_back(part_cb); + part_a = part_ca; + } + if (ca) + *ca = part_a; + if (cb) + *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated); + return (new mul(g))->setflag(status_flags::dynallocated); + } +} + /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X]. * * @param a first multivariate polynomial -- 1.5.6 Best regards, Alexei -- All science is either physics or stamp collecting.
participants (1)
-
Alexei Sheplyakov