[PATCH 1/2] [bugfix] fsolve: check if evalf() return value is actually a number.
Fixes the segfault triggered by fsolve((1/(sqrt(2*Pi)))*integral(t,0,x,exp(-1/2*t^2))==0.5,x,0,100) In general, ex_to is unsafe, and should be used only after proper checks. evalf() may return non-numeric expression for various reasons (bad convergence, floating point over- or underflow, out of memory, etc). So let's add missing checks. Thanks to Ernst Moritz Hahn for a bug report. --- ginac/inifcns.cpp | 29 ++++++++++++++++++++++++----- 1 files changed, 24 insertions(+), 5 deletions(-) diff --git a/ginac/inifcns.cpp b/ginac/inifcns.cpp index 981e7b2..f366e77 100644 --- a/ginac/inifcns.cpp +++ b/ginac/inifcns.cpp @@ -1007,8 +1007,16 @@ fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2) do { xxprev = xx[side]; fxprev = fx[side]; - xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf()); - fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf()); + ex dx_ = ff.subs(x == xx[side]).evalf(); + if (!is_a<numeric>(dx_)) + throw std::runtime_error("fsolve(): function derivative does not evaluate numerically"); + xx[side] += ex_to<numeric>(dx_); + + ex f_x = f.subs(x == xx[side]).evalf(); + if (!is_a<numeric>(f_x)) + throw std::runtime_error("fsolve(): function does not evaluate numerically"); + fx[side] = ex_to<numeric>(f_x); + if ((side==0 && xx[0]<xxprev) || (side==1 && xx[1]>xxprev) || xx[0]>xx[1]) { // Oops, Newton-Raphson method shot out of the interval. // Restore, and try again with the other side instead! @@ -1017,8 +1025,16 @@ fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2) side = !side; xxprev = xx[side]; fxprev = fx[side]; - xx[side] += ex_to<numeric>(ff.subs(x==xx[side]).evalf()); - fx[side] = ex_to<numeric>(f.subs(x==xx[side]).evalf()); + + ex dx_ = ff.subs(x == xx[side]).evalf(); + if (!is_a<numeric>(dx_)) + throw std::runtime_error("fsolve(): function derivative does not evaluate numerically [2]"); + xx[side] += ex_to<numeric>(dx_); + + ex f_x = f.subs(x==xx[side]).evalf(); + if (!is_a<numeric>(f_x)) + throw std::runtime_error("fsolve(): function does not evaluate numerically [2]"); + fx[side] = ex_to<numeric>(f_x); } if ((fx[side]<0 && fx[!side]<0) || (fx[side]>0 && fx[!side]>0)) { // Oops, the root isn't bracketed any more. @@ -1042,7 +1058,10 @@ fsolve(const ex& f_in, const symbol& x, const numeric& x1, const numeric& x2) static const double secant_weight = 0.984375; // == 63/64 < 1 numeric xxmid = (1-secant_weight)*0.5*(xx[0]+xx[1]) + secant_weight*(xx[0]+fx[0]*(xx[0]-xx[1])/(fx[1]-fx[0])); - numeric fxmid = ex_to<numeric>(f.subs(x==xxmid).evalf()); + ex fxmid_ = f.subs(x == xxmid).evalf(); + if (!is_a<numeric>(fxmid_)) + throw std::runtime_error("fsolve(): function does not evaluate numerically [3]"); + numeric fxmid = ex_to<numeric>(fxmid_); if (fxmid.is_zero()) { // Luck strikes... return xxmid; -- 1.7.1
participants (1)
-
Alexei Sheplyakov